Data-Driven Analysis of Student Engagement in Time-Limited Computer Laboratories

Author:

Cagliero Luca1ORCID,Canale Lorenzo12ORCID,Farinetti Laura1ORCID

Affiliation:

1. Dipartimento di Automatica e Informatica, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy

2. Centre for Research and Technological Innovation, Radiotelevisione Italiana (RAI), Via Giovanni Carlo Cavalli 6, 10129 Torino, Italy

Abstract

Computer laboratories are learning environments where students learn programming languages by practicing under teaching assistants’ supervision. This paper presents the outcomes of a real case study carried out in our university in the context of a database course, where learning SQL is one of the main topics. The aim of the study is to analyze the level of engagement of the laboratory participants by tracing and correlating the accesses of the students to each laboratory exercise, the successful/failed attempts to solve the exercises, the students’ requests for help, and the interventions of teaching assistants. The acquired data are analyzed by means of a sequence pattern mining approach, which automatically discovers recurrent temporal patterns. The mined patterns are mapped to behavioral, cognitive engagement, and affective key indicators, thus allowing students to be profiled according to their level of engagement in all the identified dimensions. To efficiently extract the desired indicators, the mining algorithm enforces ad hoc constraints on the pattern categories of interest. The student profiles and the correlations among different engagement dimensions extracted from the experimental data have been shown to be helpful for the planning of future learning experiences.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gender Disparities in a Databases Course: Performance of Different Activities;2024 IEEE Global Engineering Education Conference (EDUCON);2024-05-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3