The Changes in Soil Microbial Communities and Assembly Processes along Vegetation Succession in a Subtropical Forest

Author:

Ren Jiusheng1,Huang Kangxiang2,Xu Fangfang12,Zhang Yuan2,Yuan Bosen2,Chen Huimin3,Shi Fuxi24ORCID

Affiliation:

1. School of Water Resources and Environmental Engineering/Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang 330013, China

2. Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China

3. Jiangxi Agricultural University Library, Jiangxi Agricultural University, Nanchang 330045, China

4. Matoushan Observation and Research Station of Forest Ecosystem, Zixi, Fuzhou 335300, China

Abstract

Soil microbes are the primary drivers of the material cycling of the forest ecosystem, and understanding how microbial structure and composition change across succession assists in clarifying the mechanisms behind succession dynamics. However, the response of soil microbial communities and assembly processes to succession is poorly understood in subtropical forests. Thus, through the “space instead of time” and high throughput sequencing method, the dynamics of the soil bacterial and fungal communities and assembly process along the succession were studied, where five succession stages, including Abandoned lands (AL), Deciduous broad-leaved forests (DB), Coniferous forests (CF), Coniferous broad-leaved mixed forests (CB), and Evergreen broad-leaved forests (EB), were selected in a subtropical forest on the western slope of Wuyi Mountain, southern China. The results demonstrated that succession significantly decreased soil bacterial α-diversity but had little effect on fungal α-diversity. The composition of soil bacterial and fungal communities shifted along with the succession stages. LEfSe analysis showed the transition from initial succession microbial communities dominated by Firmicutes, Bacteroidota, Ascomycota, and Chytridiomycota to terminal succession communities dominated by Actinobacteriota and Basidiomycota. Distance-based redundancy analysis (db-RDA) revealed that soil total organic carbon (TOC) was the main factor explaining variability in the structure of soil bacterial communities, and multiple soil environmental factors such as the TOC, soil total nitrogen (TN), C:N ratio, and pH co-regulated the structure of fungi. The null models illustrated that deterministic processes were dominant in the soil bacterial communities, while the stochastic processes contributed significantly to the soil fungal communities during succession. Collectively, our results suggest that different patterns are displayed by the soil bacterial and fungal communities during the succession. These findings enhance our comprehension of the processes that drive the formation and maintenance of soil microbial diversity throughout forest succession.

Funder

the National Natural Science Foundation of China

Doctoral Scientific Research Foundation of East China University of Technology

Science and Technology Project of the Jiangxi Provincial Department of Education

Open Research Fund of Jiangxi Province Institute of Water Sciences

Double Thousand Plan of Jiangxi Province

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3