Abstract
(1) Background: Intracortical microelectrodes (IMEs) are essential to basic brain research and clinical brain–machine interfacing applications. However, the foreign body response to IMEs results in chronic inflammation and an increase in levels of reactive oxygen and nitrogen species (ROS/RNS). The current study builds on our previous work, by testing a new delivery method of a promising antioxidant as a means of extending intracortical microelectrodes performance. While resveratrol has shown efficacy in improving tissue response, chronic delivery has proven difficult because of its low solubility in water and low bioavailability due to extensive first pass metabolism. (2) Methods: Investigation of an intraventricular delivery of resveratrol in rats was performed herein to circumvent bioavailability hurdles of resveratrol delivery to the brain. (3) Results: Intraventricular delivery of resveratrol in rats delivered resveratrol to the electrode interface. However, intraventricular delivery did not have a significant impact on electrophysiological recordings over the six-week study. Histological findings indicated that rats receiving intraventricular delivery of resveratrol had a decrease of oxidative stress, yet other biomarkers of inflammation were found to be not significantly different from control groups. However, investigation of the bioavailability of resveratrol indicated a decrease in resveratrol accumulation in the brain with time coupled with inconsistent drug elution from the cannulas. Further inspection showed that there may be tissue or cellular debris clogging the cannulas, resulting in variable elution, which may have impacted the results of the study. (4) Conclusions: These results indicate that the intraventricular delivery approach described herein needs further optimization, or may not be well suited for this application.
Funder
United States Department of Veterans Affairs
National Institute of Neurological Disorders and Stroke
National Institute for Biomedical Imaging and Bioengineering
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献