Digital Twins in Healthcare: Methodological Challenges and Opportunities

Author:

Meijer Charles1,Uh Hae-Won1,el Bouhaddani Said1ORCID

Affiliation:

1. Department Data Science & Biostatistics, Julius Center, UMC Utrecht, 3584 CX Utrecht, The Netherlands

Abstract

One of the most promising advancements in healthcare is the application of digital twin technology, offering valuable applications in monitoring, diagnosis, and development of treatment strategies tailored to individual patients. Furthermore, digital twins could also be helpful in finding novel treatment targets and predicting the effects of drugs and other chemical substances in development. In this review article, we consider digital twins as virtual counterparts of real human patients. The primary aim of this narrative review is to give an in-depth look into the various data sources and methodologies that contribute to the construction of digital twins across several healthcare domains. Each data source, including blood glucose levels, heart MRI and CT scans, cardiac electrophysiology, written reports, and multi-omics data, comes with different challenges regarding standardization, integration, and interpretation. We showcase how various datasets and methods are used to overcome these obstacles and generate a digital twin. While digital twin technology has seen significant progress, there are still hurdles in the way to achieving a fully comprehensive patient digital twin. Developments in non-invasive and high-throughput data collection, as well as advancements in modeling and computational power will be crucial to improve digital twin systems. We discuss a few critical developments in light of the current state of digital twin technology. Despite challenges, digital twin research holds great promise for personalized patient care and has the potential to shape the future of healthcare innovation.

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cloud-based Fusion Rendering for AR Applications;2023 IEEE 3rd International Conference on Digital Twins and Parallel Intelligence (DTPI);2023-11-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3