Improved Quantum Molecular Dynamics Model and Its Application to Ternary Breakup Reactions

Author:

Tian Junlong,Li Xian,Li Cheng

Abstract

Collisions of very heavy nuclei 197Au+197Au at the energy range of 5–30 A MeV have been studied within the improved quantum molecular dynamics (ImQMD) model. A class of ternary events satisfying a nearly complete balance of mass numbers is selected and we find that the probability of ternary breakup depends on the incident energy and the impact parameter. It is also found that the largest probability of ternary breakup is located at the energy around 24 A MeV for the system 197Au+197Au. The experimental mass distributions and angular distributions for the system 197Au+197Au ternary breakup fragments can be reproduced well by the calculation with the ImQMD model at the energy of 15 A MeV. The modes and mechanisms of ternary and quaternary breakup are studied by time-dependent snapshots of ternary events. The direct prolate, direct oblate, and cascade ternary breakup modes, are manifested and their production probabilities are obtained. The characteristic features in ternary breakup events, three mass-comparable fragments, and the very fast, nearly collinear breakup, account for the two-preformed-neck shape of the composite system. The mean free path of nucleons in the reaction system is studied and the shorter mean free path is responsible for the ternary breakup with three mass comparable fragments, in which the two-body dissipation mechanism plays a dominant role.

Funder

National Natural Science Foundation of China

Central Government Guides Local Scientific and Technological Development Fund Projects

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3