Author:
Sammarruca Francesca,Millerson Randy
Abstract
We report neutron star predictions based on our most recent equations of state. These are derived from chiral effective field theory, which allows for a systematic development of nuclear forces, order by order. We utilize high-quality two-nucleon interactions and include all three-nucleon forces up to fourth order in the chiral expansion. Our ab initio predictions are restricted to the domain of applicability of chiral effective field theory. However, stellar matter in the interior of neutron stars can be up to several times denser than normal nuclear matter at saturation, and its composition is essentially unknown. Following established practices, we extend our microscopic predictions to higher densities matching piecewise polytropes. The radius of the average-size neutron star, about 1.4 solar masses, is sensitive to the pressure at normal densities, and thus it is suitable to constrain ab initio theories of the equation of state. For this reason, we focus on the radius of medium-mass stars. We compare our results with other theoretical predictions and recent constraints.
Funder
United States Department of Energy
Subject
General Physics and Astronomy
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献