Abstract
According to the strange quark matter hypothesis, pulsars may actually be strange stars composed of self-bound strange quark matter. The normal matter crust of a strange star, unlike that of a normal neutron star, is supported by a strong electric field. A gap is then presented between the crust and the strange quark core. Therefore, peculiar core–crust oscillation may occur in a strange star, which can produce distinctive gravitational waves. In this paper, the waveforms of such gravitational waves are derived using a rigid model. We find that the gravitational waves are extremely weak and undetectable, even for the next-generation detectors. Therefore, the seismology of a strange star is not affected by the core–crust oscillation. Observers will have to search for other effects to diagnose the existence of the crust.
Funder
National Natural Science Foundation of China
National Key R&D Program of China
National SKA Program of China
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Recent progresses in strange quark stars;Frontiers in Astronomy and Space Sciences;2024-08-21
2. Hybrid strangeon stars;Physical Review D;2023-12-19