Revisiting a Realistic Intersecting D6-Brane with Modified Soft SUSY Terms

Author:

Khan Imtiaz12,Ahmed Waqas3ORCID,Li Tianjun12,Raza Shabbar4ORCID

Affiliation:

1. CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China

2. School of Physical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China

3. Center for Fundamental Physics and School of Mathematics and Physics, Hubei Polytechnic University, Huangshi 435003, China

4. Department of Physics, Federal Urdu University of Arts, Science and Technology, Karachi 75300, Pakistan

Abstract

Because there are a few typos in the supersymmetry-breaking sfermion masses and trilinear soft term, regarding the current Large Hadron Collider (LHC) and dark matter searches, we revisit a three-family Pati–Salam model based on intersecting D6-branes in Type IIA string theory on a T6/(Z2×Z2) orientifold with a realistic phenomenology. We study the viable parameter space and discuss the spectrum consistent with the current LHC Supersymmetry searches and the dark matter relic density bounds from the Planck 2018 data. For the gluinos and first two generations of sfermions, we observe that the gluino mass is in the range [2, 14] TeV, the squarks mass range is [2, 13] TeV and the sleptons mass is in the range [1, 5] TeV. We achieve the cold dark matter relic density consistent with 5σ Planck 2018 bounds via A-funnel and coannihilation channels such as stop–neutralino, stau–neutralino, and chargino–neutralino. Except for a few chargino–neutralino coannihilation solutions, these solutions satisfy current nucleon-neutralino spin-independent and spin-dependent scattering cross-sections and may be probed by future dark matter searches.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Key Research Program of the Chinese Academy of Sciences

Scientific Instrument Developing Project of the Chinese Academy of Sciences

International Partnership Program of Chinese Academy of Sciences for Grand Challenges

CAS-TWAS president’s fellowship program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3