Comparing Numerical Relativity and Perturbation Theory Waveforms for a Non-Spinning Equal-Mass Binary

Author:

Islam Tousif123ORCID,Field Scott E.13,Khanna Gaurav234ORCID

Affiliation:

1. Department of Mathematics, University of Massachusetts, Dartmouth, MA 02747, USA

2. Department of Physics, University of Massachusetts, Dartmouth, MA 02747, USA

3. Center for Scientific Computing and Data Science Research, University of Massachusetts, Dartmouth, MA 02747, USA

4. Department of Physics and Center for Computational Research, University of Rhode Island, Kingston, RI 02881, USA

Abstract

Past studies have empirically demonstrated a surprising agreement between gravitational waveforms computed using adiabatic–driven–inspiral point–particle black hole perturbation theory (ppBHPT) and numerical relativity (NR) following a straightforward calibration step, sometimes referred to as α-β scaling. Specifically focusing on the quadrupole mode, this calibration technique necessitates only two time-independent parameters to scale the overall amplitude and time coordinate. In this article, part of a Special Issue, we investigate this scaling for non-spinning binaries at the equal-mass limit. Even without calibration, NR and ppBHPT waveforms exhibit an unexpected degree of similarity after accounting for different mass scale definitions. Post-calibration, good agreement between ppBHPT and NR waveforms extends nearly up to the point of the merger. We also assess the breakdown of the time-independent assumption of the scaling parameters, shedding light on current limitations and suggesting potential generalizations for the α-β scaling technique.

Funder

NSF

Office of Naval Research

ONR/DURIP

Massachusetts Green High-Performance Computing Center

Publisher

MDPI AG

Reference57 articles.

1. Fast and Accurate Prediction of Numerical Relativity Waveforms from Binary Black Hole Coalescences Using Surrogate Models;Blackman;Phys. Rev. Lett.,2015

2. Numerical relativity waveform surrogate model for generically precessing binary black hole mergers;Blackman;Phys. Rev.,2017

3. A Surrogate Model of Gravitational Waveforms from Numerical Relativity Simulations of Precessing Binary Black Hole Mergers;Blackman;Phys. Rev. D,2017

4. Surrogate model of hybridized numerical relativity binary black hole waveforms;Varma;Phys. Rev.,2019

5. Surrogate models for precessing binary black hole simulations with unequal masses;Varma;Phys. Rev. Res.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3