Probing for Lorentz Invariance Violation in Pantheon Plus Dominated Cosmology

Author:

Staicova Denitsa1ORCID

Affiliation:

1. Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria

Abstract

The Hubble tension in cosmology is not showing signs of alleviation and thus, it is important to look for alternative approaches to it. One such example would be the eventual detection of a time delay between simultaneously emitted high-energy and low-energy photons in gamma-ray bursts (GRB). This would signal a possible Lorentz Invariance Violation (LIV) and in the case of non-zero quantum gravity time delay, it can be used to study cosmology as well. In this work, we use various astrophysical datasets (BAO, Pantheon Plus and the CMB distance priors), combined with two GRB time delay datasets with their respective models for the intrinsic time delay. Since the intrinsic time delay is considered the largest source of uncertainty in such studies, finding a better model is important. Our results yield as quantum gravity energy bound EQG≥1017 GeV and EQG≥1018 GeV respectively. The difference between standard approximation (constant intrinsic lag) and the extended (non-constant) approximations is minimal in most cases we conside. However, the biggest effect on the results comes from the prior on the parameter cH0rd, emphasizing once again that at current precision, cosmological datasets are the dominant factor in determining the cosmology. We estimate the energies at which cosmology gets significantly affected by the time delay dataset.

Funder

COST Action

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3