Abstract
Einstein described the relationship between mass and energy using the theory of special relativity by a simple equation, E=mc2. Mass–energy equivalence implies that mass can be converted into energy and vice versa. In this study, a virtual reality (VR) system was developed for learners to take a spacecraft travelling at nearly the speed of light to conduct space exploration and understand the concepts of special relativity and mass–energy equivalence. A teaching experiment was conducted to investigate the learning effectiveness and cognitive load of learners by recruiting 60 students as research samples. The experimental group (30 students) used the VR system and the control group (30 students) used physics textbooks for learning special relativity and mass–energy equivalence. The experimental results reveal that the learning effectiveness of the experimental group is higher than that of the control group while the cognitive load of the former is lower than that of the latter. The questionnaire results show that students of the control group had responded positively to learning content, cognitive usefulness, cognitive ease of use, and user satisfaction, indicating that they were satisfied with the learning experience of the VR system.
Funder
National Science and Technology Council
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献