Abstract
A universal upper limit on the entropy contained in a localized quantum system of a given size and total energy is expressed by the so-called Bekenstein bound. In a previous paper [Buoninfante, L. et al. 2022], on the basis of general thermodynamic arguments, and in regimes where the equipartition theorem still holds, the Bekenstein bound has been proved practically equivalent to the Heisenberg uncertainty relation. The smooth transition between the Bekenstein bound and the holographic bound suggests a new pair of canonical non-commutative variables, which could be thought to hold in strong gravity regimes.
Subject
General Physics and Astronomy