Abstract
Recently, the authors have formulated and explored a novel Painlevé–Gullstrand variant of the Lense–Thirring spacetime, which has some particularly elegant features, including unit-lapse, intrinsically flat spatial 3-slices, and some particularly simple geodesics—the “rain” geodesics. At the linear level in the rotation parameter, this spacetime is indistinguishable from the usual slow-rotation expansion of Kerr. Herein, we shall show that this spacetime possesses a nontrivial Killing tensor, implying separability of the Hamilton–Jacobi equation. Furthermore, we shall show that the Klein–Gordon equation is also separable on this spacetime. However, while the Killing tensor has a 2-form square root, we shall see that this 2-form square root of the Killing tensor is not a Killing–Yano tensor. Finally, the Killing-tensor-induced Carter constant is easily extracted, and now, with a fourth constant of motion, the geodesics become (in principle) explicitly integrable.
Subject
General Physics and Astronomy
Reference44 articles.
1. Painlevé–Gullstrand form of the Lense–Thirring Spacetime
2. La mécanique classique et la théorie de la relativité;Painlevé;Comptes Rendus de l’Académie des Sciences,1921
3. La gravitation dans la mécanique de Newton et dans la mécanique d’Einstein;Painlevé;Comptes Rendus de l’Académie des Sciences,1921
4. Allgemeine Lösung des statischen Einkörperproblems in der Einsteinschen Gravitationstheorie;Gullstrand;Arkiv för Matematik Astronomi och Fysik,1922
5. Regular coordinate systems for Schwarzschild and other spherical spacetimes
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献