Realization of Bounce in a Modified Gravity Framework and Information Theoretic Approach to the Bouncing Point

Author:

Saha Sanghati1ORCID,Chattopadhyay Surajit1ORCID

Affiliation:

1. Department of Mathematics, Amity University Kolkata, Major Arterial Road, Action Area II, Newtown, Rajarhat, Kolkata 700135, India

Abstract

In this work, we report a study on bouncing cosmology with modified generalized Chaplygin Gas (mgCG) in a bulk viscosity framework. Reconstruction schemes were demonstrated in Einstein and modified f(T) gravity framework under the purview of viscous cosmological settings. We also took non-viscous cases into account. We studied the equation of state (EoS) parameter under various circumstances and judged the stability of the models through the sign of the squared speed of sound. We observed the mgCG behaving like avoidance of Big Rip in the presence of bulk viscosity at the turnaround point and in non-viscous cases, a phantom-like behavior appears. The turnaround point equation of state parameter crosses the phantom boundary, violating NEC. The role of the mgCG’s model parameters was also investigated before and after the bounce. A Hubble flow dynamics was carried out and, it was revealed that mgCG is capable of realizing an inflationary phase as well as an exit from inflation. An f(T) gravitational paradigm was also considered, where the mgCG density was reconstructed in the presence of bulk viscosity. The role of the parameters associated with the bouncing scale factor, describing how fast the bounce takes place, was also studied in this framework. Finally, the reconstructed mgCG turned out to be stable against small perturbations irrespective of the presence of bulk viscosity and modified gravity scenario. Finally, the reconstruction scheme was assessed using statistical analysis, Shannon entropy.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3