Progress in the Simulation and Modelling of Coherent Radio Pulses from Ultra High-Energy Cosmic Particles

Author:

Alvarez-Muñiz JaimeORCID,Zas EnriqueORCID

Abstract

In the last decade, many experiments have been planned, designed or constructed to detect Ultra High Energy showers produced by cosmic rays or neutrinos using the radio technique. This technique consists in detecting short radio pulses emitted by the showers. When the detected wavelengths are longer than typical shower length scales, the pulses are coherent. Radio emission can be simulated by adding up the contributions of all the particle showers in a coherent way. The first program to use this approach was based on an algorithm developed more than thirty years ago and referred to as “ZHS”. Since then, much progress has been obtained using the ZHS algorithm with different simulation programs to investigate pulses from showers in dense homogeneous media and the atmosphere, applying it to different experimental initiatives, and developing extensions to address different emission mechanisms or special circumstances. We here review this work, primarily led by the authors in collaboration with other scientists, illustrating the connections between different articles, and giving a pedagogical approach to most of the work.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Characterization of atmosphere-skimming cosmic-ray showers in high-altitude experiments;Journal of Cosmology and Astroparticle Physics;2024-07-01

2. Density and magnetic field strength dependence of radio pulses induced by energetic air showers;Journal of Cosmology and Astroparticle Physics;2023-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3