Exploring the Spectral Line Broadening of the Bulk Motions in the High Mass Star Forming Region with Radiative Transfer Simulations

Author:

Mo Shixian12ORCID,Qiu Keping12ORCID

Affiliation:

1. School of Astronomy and Space Science, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China

2. Key Laboratory of Modern Astronomy and Astrophysics, Nanjing University, Ministry of Education, Nanjing 210023, China

Abstract

The Davis–Chandrasekhar–Fermi (DCF) method is widely used to indirectly estimate the strength of magnetic fields in star-forming regions. However, recent developments in this method have primarily focused on improving the measurement of angular dispersion of the field, neglecting other physical quantities, especially turbulence velocity. Most DCF studies tend to overlook or fail to acknowledge the influence of bulk motions on the linewidth, and directly obtain the turbulence velocity based on the non-thermal linewidth. Therefore, to explore the contributions of bulk motions to the linewidth, we conducted radiative transfer simulations using a rotating and infalling envelope–disk model to a high-mass star formation region, IRAS18360-0537. The main conclusion from our work is that the bulk motions contribute significantly to the linewidth and cannot be fully eliminated by simply deducing velocity gradients. Hence, fully attributing the observed non-thermal velocity dispersion derived from fitting a spectral line profile to the turbulence can result in significantly overestimated magnetic field strength and may yield unscientific results of star-forming regions.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

China Manned Space Project

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3