Author:
Rani Shamaila,Azhar Nadeem
Abstract
In the present manuscript, the evolution of the cosmic parameters and planes are being investigated in the framework of the DGP braneworld model. In this scenario, the interaction Γ between the Barrow holographic dark energy model (whose infrared cutoff scale is set by Hubble and event horizons) and pressureless dark matter are considered. We check the behavior of different cosmological parameters such as Hubble, equation of state, deceleration and squared speed of sound from the early matter-dominated era until the late-time acceleration. It is found that the range of Hubble parameter lies in the interval 95−35+35 (for Hubble horizon) and 97−23+23 (for event horizon). For both horizons, the equation of state parameter favors the phantom dominant era as well as the ΛCDM model while the deceleration parameter illustrates the accelerated expansion of the universe. Furthermore, stability of the underlying model is found through squared speed of sound. Furthermore, it is observed that ω−ωϑ′ plane corresponds to freezing and thawing region for Hubble and event horizons, respectively. Furthermore, statefinder plane shows the ΛCDM and Chaplygin gas behavior for both models. Finally, we investigate the thermodynamical nature of the underlying model through Barrow entropy as horizon entropy and found validity for both horizons.
Subject
General Physics and Astronomy
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献