Counting Tensor Rank Decompositions

Author:

Obster DennisORCID,Sasakura NaokiORCID

Abstract

Tensor rank decomposition is a useful tool for geometric interpretation of the tensors in the canonical tensor model (CTM) of quantum gravity. In order to understand the stability of this interpretation, it is important to be able to estimate how many tensor rank decompositions can approximate a given tensor. More precisely, finding an approximate symmetric tensor rank decomposition of a symmetric tensor Q with an error allowance Δ is to find vectors ϕi satisfying ∥Q−∑i=1Rϕi⊗ϕi⋯⊗ϕi∥2≤Δ. The volume of all such possible ϕi is an interesting quantity which measures the amount of possible decompositions for a tensor Q within an allowance. While it would be difficult to evaluate this quantity for each Q, we find an explicit formula for a similar quantity by integrating over all Q of unit norm. The expression as a function of Δ is given by the product of a hypergeometric function and a power function. By combining new numerical analysis and previous results, we conjecture a formula for the critical rank, yielding an estimate for the spacetime degrees of freedom of the CTM. We also extend the formula to generic decompositions of non-symmetric tensors in order to make our results more broadly applicable. Interestingly, the derivation depends on the existence (convergence) of the partition function of a matrix model which previously appeared in the context of the CTM.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The tensor of the exact circle: reconstructing geometry;Physica Scripta;2023-11-27

2. Tensors and Algebras: An Algebraic Spacetime Interpretation for Tensor Models;Symmetry, Integrability and Geometry: Methods and Applications;2023-10-18

3. Splitting-merging transitions in tensor-vectors systems in exact large- N limits;Physical Review D;2022-12-21

4. Emergence of Lie group symmetric classical spacetimes in the canonical tensor model;Progress of Theoretical and Experimental Physics;2022-03-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3