Investigation of Alpha-Proton Drift Speeds in the Solar Wind: WIND and HELIOS Observations

Author:

Jagarlamudi Vamsee KrishnaORCID,Bruno Roberto,De Marco Rossana,D’Amicis RaffaellaORCID,Perrone Denise,Telloni DanieleORCID,Raouafi Nour E.ORCID

Abstract

In this paper, we present an analysis of how alpha–proton drift speeds (the difference between the magnitudes of alpha and bulk proton speeds) are constrained in the inner heliosphere using observations from the WIND and twin HELIOS spacecraft. The solar wind is separated based on its bulk proton speed into the fast wind (>600 km/s) and slow wind (<400 km/s). The slow wind is again separated based on its normalized cross-helicity; slow wind intervals with average absolute normalized cross-helicity greater than 0.6 are considered Alfvénic, and those less than 0.6 are considered non-Alfvénic. Analysis of different types of wind intervals between 0.3 to 1 au have shown that the alpha-proton drift speeds are very much constrained by the angle between the B and V vectors for fast and slow Alfvénic wind intervals. Depending on the polarity of the magnetic field, there is a clear correlation or anti-correlation between the drift speeds and the angle between the B and V vectors. Interestingly, we did not observe any such relation in the non-Alfvénic slow wind intervals. Large-amplitude Alfvénic fluctuations present in the fast and slow Alfvénic winds control the drift between the alpha and proton core in the Alfvénic solar wind. The drift speeds can be modeled using the equation +/−VArAcosθBV, where VA is the Alfvén speed and rA is the Alfvén ratio. Because the observations of drift speed constrained by the angle between the B and V vector for the fast and slow Alfvénic wind intervals are observed throughout the inner heliosphere, it is possible to consider this observed behavior to be a universal phenomenon of Alfvénic wind above the Alfvénic surface.

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3