New Bounds for the Mass of Warm Dark Matter Particles Using Results from Fermionic King Model

Author:

Velazquez LuisberisORCID

Abstract

After reviewing several aspects about the thermodynamics of self-gravitating systems that undergo the evaporation (escape) of their constituents, some recent results obtained in the framework of fermionic King model are applied here to the analysis of galactic halos considering warm dark matter (WDM) particles. According to the present approach, the reported structural parameters of dwarf galaxies are consistent with the existence of a WDM particle with mass in the keV scale. Assuming that the dwarf galaxy Willman 1 belongs to the region III of fermionic King model (whose gravothermal collapse is a continuous phase transition), one obtains the interval 1.2 keV ≤ m ≤ 2.6 keV for the mass of WDM particle. This analysis improves previous estimates by de Vega and co-workers [Astropart. Phys. 46 (2013) 14–22] considering both the quantum degeneration and the incidence of the constituents evaporation. This same analysis evidences that most of galaxies are massive enough to undergo a violent gravothermal collapse (a discontinuous microcanonical phase transition) that leads to the formation of a degenerate core of WDM particles. It is also suggested that quantum-relativistic processes governing the cores of large galaxies (e.g., the formation of supermassive black holes) are somehow related to the gravothermal collapse of the WDM degenerate cores when the total mass of these systems are comparable to the quantum-relativistic characteristic mass Mc=ℏc/G3/2m−2≃1012M⊙ obtained for WDM particles with mass m in the keV scale. The fact that a WDM particle with mass in the keV scale seems to be consistent with the observed properties of dwarf and large galaxies provides a strong support to this dark matter candidate.

Funder

Fondo Nacional de Desarrollo Científico y Tecnológico

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3