Searching for Magnetospheres around Herbig Ae/Be Stars

Author:

Pogodin MikhailORCID,Drake NataliaORCID,Beskrovnaya NinaORCID,Pavlovskiy Sergei,Hubrig SwetlanaORCID,Schöller Markus,Järvinen SilvaORCID,Kozlova Olesya,Alekseev Ilya

Abstract

We describe four different approaches for the detection of magnetospheric accretion among Herbig Ae/Be stars with accretion disks. Studies of several unique objects have been carried out. One of the objects is the Herbig Ae star HD 101412 with a comparatively strong magnetic field. The second is the early-type Herbig B6e star HD 259431. The existence of a magnetosphere in these objects was not recognized earlier. In both cases, a periodicity in the variation of some line parameters, originating near the region of the disk/star interaction, has been found. The third object is the young binary system HD 104237, hosting a Herbig Ae star and a T Tauri star. Based on the discovery of periodic variations of equivalent widths of atmospheric lines in the spectrum of the primary, we have concluded that the surface of the star is spotted. Comparing our result with an earlier one, we argue that these spots can be connected with the infall of material from the disk onto the stellar surface through a magnetosphere. The fourth example is the Herbig Ae/Be star HD 37806. Signatures of magnetospheric accretion in this object have been identified using a different method. They were inferred from the short-term variability of the He i λ5876 line profile forming in the region of the disk/star interaction.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference37 articles.

1. The Spectra of Be- and Ae-TYPE Stars Associated with Nebulosity

2. The Herbig Ae/Be stars associated with nebulosity;Finkenzeller;Astron. Astrophys. Suppl.,1984

3. A new catalogue of members and candidate members of the Herbig Ae/Be (HAEBE) stellar group;The;Astron. Astrophys. Suppl.,1994

4. Disk Accretion Rates for T Tauri Stars

5. Magnetic fields in Herbig Ae stars

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3