Is Core Angular Momentum Key to the Giant Dynamo?

Author:

Schröder Klaus-Peter,Konstantinova-Antova RenadaORCID

Abstract

The pros and cons of core angular momentum dissipation into the convective envelopes of giants as a driver of giant activity is discussed in face of the observational evidence, which points to two ”magnetic strips“, in the HRD, where in the first, at the base of the RGB, activity of moderate mass stars is freshly started and rejuvenated in the second strip, ascending along the mid-AGB. It remains unclear, though, which depths the giant dynamo is operating. Both concentrations of active giants in the HRD are related to stellar evolution phases with core contraction and spin-up, and presumably the dissipation of angular momentum into the convective envelope above. At the same time, the latter has a small Rossby number by virtue of its increasing convective turn-over time—i.e., favourable conditions to run an alpha-omega dynamo. Since coronal X-ray emission appears to give an incomplete picture of stellar activity across the HR diagramme, we here focus on the observed chromospheric emissions across the giant branches and find good agreement with the magnetic field Zeeman-detections there. Stable evolution phases—solar-type main sequence stars with central hydrogen burning and moderate mass, central Helium burning K giants—by contrast demonstrate a decline in activity, apparently imposed by magnetic braking, as such stars are also slower rotators. In that sense, the observed picture of two magnetic activity strips across the HR diagramme could empirically be explained as an interplay of magnetic braking during the stable phase of core helium burning and supply by internal angular momentum during episodes of fast core contraction with core spin-up and angular momentum dredge-up, while meeting dynamo-friendly envelope conditions. At the same time, the sporadic external supply of angular momentum by the engulfment events of a planet, in the course of the evolutionary envelope expansion, may explain some cases of exceptional activity outside the here-described general picture.

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3