Abstract
Based on the spectra with high resolution and a high signal-to-noise ratio, we investigate the enrichment history of the s-process element in seven barium (Ba) stars by measuring their Ba odd isotope fraction. It is found that the relative contributions of the s-process to their Ba abundance are 91.4±25.7%, 91.4±34.3%, 82.9±28.5%, 77.1±31.4%, and 71.4±37.1% for REJ 0702+129, HD 13611, BD+80°670, HR 5692, and HD 202109, respectively. Our results suggest that these five Ba stars have a prominent s-process signature, which indicates that their heavy elements mainly come from their former AGB companions (now WDs) by mass transfer, while the r-process contribution can naturally be explained by the evolution of the Milky Way. The s-process contribution of BD+80°670 is 51.4±31.4%, which is the lowest among our seven sample stars. Considering its lower values of both [Ba/Nd] and [Ba/Eu], we suspect that BD+68°1027 is likely to be a r-rich Ba star and has similar origins to the CEMP-r/s stars. HD 218356 has an unreasonable s-process contribution over 100%. Combining its stellar atmospheric parameters and the evolutionary stage, we speculate that HD 218356 is a more evolved extrinsic Ba star, and its massive companion should have the largest s-process efficiency in our samples.
Funder
National Key Basic R&D Program of China
National Natural Science Foundation of China
333 Talents Project
China Manned Space Project
Natural Science Foundation of Hebei Province
Hebei Provincial Department of Science and Technology
Subject
General Physics and Astronomy