Quantum Dark Solitons in the 1D Bose Gas: From Single to Double Dark-Solitons

Author:

Kinjo Kayo,Kaminishi Eriko,Mori Takashi,Sato Jun,Kanamoto RinaORCID,Deguchi Tetsuo

Abstract

We study quantum double dark-solitons, which give pairs of notches in the density profiles, by constructing corresponding quantum states in the Lieb–Liniger model for the one-dimensional Bose gas. Here, we expect that the Gross–Pitaevskii (GP) equation should play a central role in the long distance mean-field behavior of the 1D Bose gas. We first introduce novel quantum states of a single dark soliton with a nonzero winding number. We show them by exactly evaluating not only the density profile but also the profiles of the square amplitude and phase of the matrix element of the field operator between the N-particle and (N−1)-particle states. For elliptic double dark-solitons, the density and phase profiles of the corresponding states almost perfectly agree with those of the classical solutions, respectively, in the weak coupling regime. We then show that the scheme of the mean-field product state is quite effective for the quantum states of double dark solitons. Assigning the ideal Gaussian weights to a sum of the excited states with two particle-hole excitations, we obtain double dark-solitons of distinct narrow notches with different depths. We suggest that the mean-field product state should be well approximated by the ideal Gaussian weighted sum of the low excited states with a pair of particle-hole excitations. The results of double dark-solitons should be fundamental and useful for constructing quantum multiple dark-solitons.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference42 articles.

1. Bose–Einstein Condensation;Pitaevskii,2003

2. Hamiltonian Methods in the Theory of Solitons;Faddeev,1987

3. Nonlinear waves in the Pitaevskii-Gross equation

4. Optical Solitons;Abdullaev,1993

5. Dark Solitons in Bose-Einstein Condensates

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3