Affiliation:
1. Department of Physics, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
Abstract
We introduce a notion of residual diffeomorphism covariance in quantum Kantowski–Sachs (KS) describing the interior of a Schwarzschild black hole. We solve for the family of Hamiltonian constraint operators satisfying the associated covariance condition, as well as parity invariance, preservation of the Bohr Hilbert space of the Loop Quantum KS and a correct (naïve) classical limit. We further explore the imposition of minimality for the number of terms and compare the solution with those of other Hamiltonian constraints proposed for the Loop Quantum KS in the literature. In particular, we discuss a lapse that was recently commonly chosen due to the resulting decoupling of the evolution of the two degrees of freedom and the exact solubility of the model. We show that such a choice of lapse can indeed be quantized as an operator that is densely defined on the Bohr Hilbert space and that any such operator must include an infinite number of shift operators.
Funder
National Science Foundation
Reference35 articles.
1. Rovelli, C. (2004). Quantum Gravity, Cambridge University Press. Cambridge Monographs on Mathematical Physics.
2. Background independent quantum gravity: A Status report;Ashtekar;Class. Quantum Gravity,2004
3. Thiemann, T. (2007). Modern Canonical Quantum General Relativity, Cambridge University Press. Cambridge Monographs on Mathematical Physics.
4. Gambini, R., and Pullin, J. (2011). A First Course in Loop Quantum Gravity, Oxford University Press.
5. Rovelli, C., and Vidotto, F. (2014). Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory, Cambridge University Press. Cambridge Monographs on Mathematical Physics.