Abstract
Galactic cosmic rays are mostly made up of energetic nuclei, with less than 1% of electrons (and positrons). Precise measurement of the electron and positron component requires a very efficient method to reject the nuclei background, mainly protons. In this work, we develop an unsupervised machine learning method to identify electrons and positrons from cosmic ray protons for the Dark Matter Particle Explorer (DAMPE) experiment. Compared with the supervised learning method used in the DAMPE experiment, this unsupervised method relies solely on real data except for the background estimation process. As a result, it could effectively reduce the uncertainties from simulations. For three energy ranges of electrons and positrons, 80–128 GeV, 350–700 GeV, and 2–5 TeV, the residual background fractions in the electron sample are found to be about (0.45 ± 0.02)%, (0.52 ± 0.04)%, and (10.55 ± 1.80)%, and the background rejection power is about (6.21 ± 0.03) × 104, (9.03 ± 0.05) × 104, and (3.06 ± 0.32) × 104, respectively. This method gives a higher background rejection power in all energy ranges than the traditional morphological parameterization method and reaches comparable background rejection performance compared with supervised machine learning methods.
Funder
National Natural Science Foundation of China
Chinese Academy of Sciences (CAS) Project for Young Scientists in Basic Research
Scientific Instrument Developing Project of the Chinese Academy of Sciences
Youth Innovation Promotion Association CAS, and the Natural Science Foundation of Jiangsu Province
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献