Kerr–Schild Tetrads and the Nijenhuis Tensor

Author:

Maluf José Wadih1ORCID,Carneiro Fernando Lessa2ORCID,Ulhoa Sérgio1ORCID,Da Rocha-Neto José Francisco1

Affiliation:

1. Instituto de Física, Universidade de Brasília, Brasília 70910-900, DF, Brazil

2. Centro de Ciências Integradas, Universidade Federal do Norte do Tocantins, Araguaína 77824-838, TO, Brazil

Abstract

We write the Kerr–Schild tetrads in terms of the flat space–time tetrads and of a (1, 1) tensor Sμλ. This tensor can be considered as a projection operator, since it transforms (i) flat space–time tetrads into non-flat tetrads, and vice-versa, and (ii) the Minkowski space–time metric tensor into a non-flat metric tensor, and vice-versa. The Sμλ tensor and its inverse are constructed in terms of the standard null vector field lμ that defines the Kerr–Schild form of the metric tensor in general relativity, and that yields black holes and non-linear gravitational waves as solutions of the vacuum Einstein’s field equations. We demonstrate that the condition for the vanishing of the Ricci tensor obtained by Kerr and Schild, in empty space–time, is also a condition for the vanishing of the Nijenhuis tensor constructed out of Sμλ. Thus, a theory based on the Nijenhuis tensor yields an important class of solutions of the Einstein’s field equations, namely, black holes and non-linear gravitational waves. We also demonstrate that the present mathematical framework can easily admit modifications of the Newtonian potential that may explain the long range gravitational effects related to galaxy rotation curves.

Funder

Universidade de Brasília

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference25 articles.

1. A new class of vacuum solutions of the Einstein field equations;Kerr;IV Centenario Della Nascita di Galileo Galilei,2009

2. Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., and Herlt, E.E. (2003). Exact Solutions of Einstein Field Equations, Cambridge University Press.

3. Trautman, A. (1962). Recent Developments in General Relativity, Pergamon Press-PWN.

4. Lorentz covariant treatment of the Kerr–Schild geometry;J. Math. Phys.,1975

5. On Kerr–Schild spacetimes in higher dimensions;Ortaggio;AIP Conf. Proc.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3