Integral Fluxes of Neutrinos and Gamma-Rays Emitted from Neighboring X-ray Binaries

Author:

Kosmas Odysseas1ORCID,Papavasileiou Theodora23ORCID,Kosmas Theocharis2

Affiliation:

1. Conigital Ltd., 51 Parkside, Coventry CV1 2HG, UK

2. Department of Physics, University of Ioannina, GR-45110 Ioannina, Greece

3. Department of Informatics, University of Western Macedonia, GR-52100 Kastoria, Greece

Abstract

Astrophysical plasma ejections (jets) are formed and powered by black holes that accrete material from their companion star in binary systems. Black hole X-ray binary systems constitute potential powerful galactic and extragalactic neutrino and gamma-ray sources. After being accelerated to highly relativistic velocities and subjected to various energy-consuming interactions, the lepto-hadronic content of the jets produces secondary particles such as pions and muons that decay to gamma-ray photons and neutrinos heading towards the Earth. In this work, we employ a jet emission model in order to predict the neutrino and gamma-ray integral fluxes emanating from some of the most investigated and prominent stellar black hole X-ray binary systems in the Milky Way, such as GRO J1655-40, Cygnus X-1, SS 433, and GRS 1915+105. For the sake of comparison, we also include an extragalactic system, namely, LMC X-1, located in the Large Magellanic Cloud. For the case of gamma-ray emissions, we also include absorption effects due to X-ray emission from the accretion disk and the black hole corona, as well as ultraviolet (UV) emission from the binary system’s companion star.

Funder

The Association for Advancement of Research on Open Problems in Nuclear Physics and Particle Physics

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3