Measuring the Casimir Forces with an Adhered Cantilever: Analysis of Roughness and Background Effects

Author:

Soldatenkov Ivan A.ORCID,Yakovenko Anastasiya A.ORCID,Svetovoy Vitaly B.ORCID

Abstract

Technological progress has made possible precise measurements of the Casimir forces at distances less than 100 nm. It has enabled stronger constraints on the non-Newtonian forces at short separations and improved control of micromechanical devices. Experimental information on the forces below 30 nm is sparse and not precise due to pull-in instability and surface roughness. Recently, a method of adhered cantilever was proposed to measure the forces at small distances, which does not suffer from the pull-in instability. Deviation of the cantilever from a classic shape carries information on the forces acting nearby the adhered end. We calculate the force between a flat cantilever and rough Au plate and demonstrate that the effect of roughness dominates when the bodies approach the contact. Short-distance repulsion operating at the contact is included in the analysis. Deviations from the classic shape due to residual stress, inhomogeneous thickness of the cantilever, and finite compliance of the substrate are analysed. It is found that a realistic residual stress gives a negligible contribution to the shape, while the finite compliance and inhomogeneous thickness give measurable contributions that have to be subtracted from the raw data.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference66 articles.

1. Zur Theorie und Systematik der Molekularkr�fte

2. The Influence of Retardation on the London-van der Waals Forces

3. On the Attraction between Two Perfectly Conducting Plates;Casimir;Proc. Kon. Ned. Akad. Wet.,1948

4. The theory of molecular attractive forces between solids;Lifshitz;Sov. Phys. JETP,1956

5. GENERAL THEORY OF VAN DER WAALS' FORCES

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3