Dynamics and Stability of the Two-Body Problem with Yukawa Correction to Newton’s Gravity, Revisited and Applied Numerically to the Solar System

Author:

Hasan Nawras Abo,Joudieh Nabil,Chamoun NidalORCID

Abstract

In this manuscript, we review the motion of a two-body celestial system (planet–sun) for a Yukawa-type correction on Newton’s gravitational potential using Hamilton’s formulation. We reexamine the stability using the corresponding linearization Jacobian matrix, and verify that the conditions of Bertrand’s theorem are met for radii ≪1015 m, meaning that bound closed orbits are expected. Applied to the solar system, we present the equation of motion of the planet, then solve it both analytically and numerically. Making use of the analytical expression of the orbit, we estimate the Yukawa strength α and find it to be larger than the nominal value (10−8) adopted in previous studies, in that it is of order (α=10−4−10−5) for the terrestrial planets (Mercury, Venus, earth, Mars, and Pluto) and even larger (α=10−3) for the giant planets (Jupiter, Saturn, Uranus, and Neptune). Taking the inputs (rmin,vmas,e) observed by NASA, we analyse the orbits analytically and numerically for both the estimated and nominal values of α and determine the corresponding trajectories. For each obtained orbit, we recalculate the characterizing parameters (rmin,rmax,a,b,e) and compare their values according to the potential (Newton with/without Yukawa correction) and method (analytical and/or numerical) used. When compared to the observational data, we conclude that the path correction due to Yukawa correction is on the order of up to 80 million km (20 million km) as the maximum deviation occurring for Neptune (Pluto) for a nominal (estimated) value of α.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference30 articles.

1. Fischbach, E., and Talmadge, C.L. (1998). The Search for Non-Newtonian Gravity, Springer.

2. Landau, L.D., and Lifshitz, E.M. (1969). Course of Theoretical Physics (Mechanics), Pergamon Press. Chapter 3, Section 14.

3. Closed orbits in central forces distinct from Coulomb or harmonic oscillator type;Rodriguez;Eur. J. Phys.,1998

4. On closed but non-geometrically similar orbits;Brun;Celest. Mech. Dyn. Astr.,2006

5. Theoretical Aspects of Massive Gravity;Hinterbichler;Rev. Mod. Phys.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3