Instrumentation for Detecting Sulphur Isotopes as Biosignatures on Europa and Ganymede by Forthcoming Missions

Author:

Chela-Flores Julian

Abstract

There has been remarkable progress in identifying a certain type of biosignature, both from the point of view of the payloads of forthcoming missions, and from the point of view of biogeochemistry. This progress has been due to the evolution of miniaturized mass spectrometry that can be used, under certain circumstances and for certain samples, to distinguish between putatively abiotic and biotic sulphur isotopes. These specific types of biosignatures are discussed in the context of Europa and Ganymede. Such instruments are sufficiently precise to differentiate between abiotic and biotic signatures. We reflect on new possibilities that will be available during this decade for exploring the nearest ocean worlds: Europa and Ganymede. We review arguments that point out the presence of intriguing sulphur patches on Europa’s icy surface that were discovered by the Galileo mission. These patches lead to a “sulphur dilemma”, which suggests not to focus future measurements exclusively on organics. We comment on the possibility of measurements of sulphur isotopes, as one kind of biosignature, to be complemented with additional biosignatures, in order to fully test biogenicity. These suggestions are intended to point out the best use of the available spacecrafts’ payloads during the planning of the forthcoming Jovian missions.

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3