Abstract
We revisit the physical arguments that led to the definition of the stress–energy tensor T in the Lorentz–Finsler setting (M,L) starting with classical relativity. Both the standard heuristic approach using fluids and the Lagrangian one are taken into account. In particular, we argue that the Finslerian breaking of Lorentz symmetry makes T an anisotropic 2-tensor (i.e., a tensor for each L-timelike direction), in contrast with the energy-momentum vectors defined on M. Such a tensor is compared with different ones obtained by using a Lagrangian approach. The notion of divergence is revised from a geometric viewpoint, and, then, the conservation laws of T for each observer field are revisited. We introduce a natural anisotropic Lie bracket derivation, which leads to a divergence obtained from the volume element and the non-linear connection associated with L alone. The computation of this divergence selects the Chern anisotropic connection, thus giving a geometric interpretation to previous choices in the literature.
Subject
General Physics and Astronomy
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献