Relativistic Combination of Non-Collinear 3-Velocities Using Quaternions

Author:

Berry ThomasORCID,Visser MattORCID

Abstract

Quaternions have an (over a century-old) extensive and quite complicated interaction with special relativity. Since quaternions are intrinsically 4-dimensional, and do such a good job of handling 3-dimensional rotations, the hope has always been that the use of quaternions would simplify some of the algebra of the Lorentz transformations. Herein we report a new and relatively nice result for the relativistic combination of non-collinear 3-velocities. We work with the relativistic half-velocities w defined by v=2w1+w2, so that w=v1+1−v2=v2+O(v3), and promote them to quaternions using w=wn^, where n^ is a unit quaternion. We shall first show that the composition of relativistic half-velocities is given by w1⊕2≡w1⊕w2≡(1−w1w2)−1(w1+w2), and then show that this is also equivalent to w1⊕2=(w1+w2)(1−w2w1)−1. Here as usual we adopt units where the speed of light is set to unity. Note that all of the complicated angular dependence for relativistic combination of non-collinear 3-velocities is now encoded in the quaternion multiplication of w1 with w2. This result can furthermore be extended to obtain novel elegant and compact formulae for both the associated Wigner angle Ω and the direction of the combined velocities: eΩ=eΩΩ^=(1−w1w2)−1(1−w2w1), and w^1⊕2=eΩ/2w1+w2|w1+w2|. Finally, we use this formalism to investigate the conditions under which the relativistic composition of 3-velocities is associative. Thus, we would argue, many key results that are ultimately due to the non-commutativity of non-collinear boosts can be easily rephrased in terms of the non-commutative algebra of quaternions.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference29 articles.

1. LXXVI. Quaternionic form of relativity

2. The Theory of Relativity;Silberstein,1914

3. https://en.wikipedia.org/wiki/Ludwik_Silberstein

4. Application of quaternions to Lorentz transformations;Dirac;Proc. R. Ir. Acad.,1944

5. Quaternions in Relativity

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3