Abstract
In the last few years, the modeling of asymptotic giant branch (AGB) stars has been much investigated, both focusing on nucleosynthesis and stellar evolution aspects. Recent advances in the input physics required for stellar computations made it possible to construct more accurate evolutionary models, which are an essential tool to interpret the wealth of available observational and nucleosynthetic data. Motivated by such improvements, the FUNS stellar evolutionary code has been updated. Nonetheless, mixing processes occurring in AGB stars’ interiors are currently not well-understood. This is especially true for the physical mechanism leading to the formation of the 13C pocket, the major neutron source in low-mass AGB stars. In this regard, post-processing s-process models assuming that partial mixing of protons is induced by magneto-hydrodynamics processes were shown to reproduce many observations. Such mixing prescriptions have now been implemented in the FUNS code to compute stellar models with fully coupled nucleosynthesis. Here, we review the new generation of FRUITY models that include the effects of mixing triggered by magnetic fields by comparing theoretical findings with observational constraints available either from the isotopic analysis of trace-heavy elements in presolar grains or from carbon AGB stars and Galactic open clusters.
Funder
German-Israeli Foundation for Scientific Research and Development
Subject
General Physics and Astronomy
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献