Abstract
We study the variational principle and derivation of the field equations for different classes of teleparallel gravity theories, using both their metric-affine and covariant tetrad formulations. These theories have in common that, in addition to the tetrad or metric, they employ a flat connection as additional field variable, but dthey iffer by the presence of absence of torsion and nonmetricity for this independent connection. Besides the different underlying geometric formulation using a tetrad or metric as fundamental field variable, one has different choices to introduce the conditions of vanishing curvature, torsion, and nonmetricity, either by imposing them a priori and correspondingly restricting the variation of the action when the field equations are derived, or by using Lagrange multipliers. Special care must be taken, since these conditions form non-holonomic constraints. Here, we explicitly show that all of the aforementioned approaches are equivalent, and that the same set of field equations is obtained, independently of the choice of the geometric formulation and variation procedure. We further discuss the consequences arising from the diffeomorphism invariance of the gravitational action, and show how they establish relations between the gravitational field equations.
Funder
Estonian Research Council
Subject
General Physics and Astronomy
Reference46 articles.
1. The Geometrical Trinity of Gravity
2. Riemann-Geometrie mit Aufrechterhaltung des Begriffes des Fernparallelismus;Einstein;Sitzber. Preuss. Akad. Wiss.,1928
3. Teleparallel Gravity
4. The teleparallel equivalent of general relativity
5. Symmetric teleparallel general relativity;Nester;Chin. J. Phys.,1999
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献