Abstract
Gauge invariance of the measure associated with the gauge field is usually taken for granted, in a general gauge theory. We furnish a proof of this invariance, within Fujikawa’s approach. To stress the importance of this fact, we briefly review gauge anomaly cancellation as a consequence of gauge invariance of the bosonic measure and compare this cancellation to usual results from algebraic renormalization, showing that there are no potential inconsistencies. Then, using a path integral argument, we show that a possible Jacobian for the gauge transformation has to be the identity operator, in the physical Hilbert space. We extend the argument to the complete Hilbert space by a direct calculation.
Funder
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Fundação de Amparo à Pesquisa do Estado do Amazonas
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献