The Statistical Analysis of Exoplanet and Host Stars Based on Multi-Satellite Data Observations

Author:

Tang Yanke12ORCID,Li Xiaolu1,Xiao Kai3ORCID,Gai Ning1ORCID,Li Shijie1ORCID,Dong Futong1,Wang Yifan1,Gao Yang1ORCID

Affiliation:

1. College of Physics and Electronic Information, Dezhou University, Dezhou 253023, China

2. Yunnan Key Laboratory, International Centre of Supernovae, Kunming 650216, China

3. School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

In recent years, the rapid development of exoplanet research has provided us with an opportunity to better understand planetary systems in the universe and to search for signs of life. In order to further investigate the prevalence of habitable exoplanets and to validate planetary formation theories, as well as to comprehend planetary evolution, we have utilized confirmed exoplanet data obtained from the NASA Exoplanet Archive database, including data released by telescopes such as Kepler and TESS. By analyzing these data, we have selected a sample of planets around F, G, K, and M-type stars within a radius range of 1 to 20 R⊕ and with orbital periods ranging from 0.4 days to 400 days. Using the IDEM method based on these data, we calculated the overall formation rate, which is estimated to be 2.02%. Then, we use these data to analyze the relationship among planet formation rates, stellar metallicity, and stellar gravitational acceleration (logg). We firstly find that the formation rate of giant planets is higher around metal-rich stellars, but it inhibits the formation of gas giants when logg > 4.5, yet the stellar metallicity seems to have no effect on the formation rate of smaller planets. Secondly, the host stellar gravitational acceleration affects the relationship between planet formation rate and orbital period. Thirdly, there is a robust power-law relationship between the orbital period of smaller planets and their formation rate. Finally, we find that, for a given orbital period, there is a positive correlation between the planet formation rate and the logg.

Funder

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation of China

Project of Shandong QingChuang Science and Technology Plan

International Centre of Supernovae, Yunnan Key Laboratory

Publisher

MDPI AG

Reference34 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3