Probing Quantum Gravity with Imaging Atmospheric Cherenkov Telescopes

Author:

Terzić TomislavORCID,Kerszberg DanielORCID,Strišković JelenaORCID

Abstract

High energy photons from astrophysical sources are unique probes for some predictions of candidate theories of Quantum Gravity (QG). In particular, Imaging atmospheric Cherenkov telescope (IACTs) are instruments optimised for astronomical observations in the energy range spanning from a few tens of GeV to ∼100 TeV, which makes them excellent instruments to search for effects of QG. In this article, we will review QG effects which can be tested with IACTs, most notably the Lorentz invariance violation (LIV) and its consequences. It is often represented and modelled with photon dispersion relation modified by introducing energy-dependent terms. We will describe the analysis methods employed in the different studies, allowing for careful discussion and comparison of the results obtained with IACTs for more than two decades. Loosely following historical development of the field, we will observe how the analysis methods were refined and improved over time, and analyse why some studies were more sensitive than others. Finally, we will discuss the future of the field, presenting ideas for improving the analysis sensitivity and directions in which the research could develop.

Funder

Hrvatska Zaklada za Znanost

European Cooperation in Science and Technology

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigating the Lorentz invariance violation effect using different cosmological backgrounds;Classical and Quantum Gravity;2023-12-13

2. Gamma Ray Pulsars and Opportunities for the MACE Telescope;Galaxies;2023-08-17

3. Grimoire1 of the MAGIC telescopes;Journal of Physics: Conference Series;2023-02-01

4. Cosmic Searches for Lorentz Invariance Violation;Modified and Quantum Gravity;2023

5. Two-body decays in deformed relativity;Journal of High Energy Physics;2022-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3