Improved Model of Primordial Black Hole Formation after Starobinsky Inflation

Author:

Saburov Sultan1,Ketov Sergei V.123ORCID

Affiliation:

1. Interdisciplinary Research Laboratory, Tomsk State University, Tomsk 634050, Russia

2. Department of Physics, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji 192-0397, Japan

3. Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, Chiba 277-8583, Japan

Abstract

A new (improved) model of inflation and primordial black hole (PBH) formation is proposed by combining the Starobinsky model of inflation, Appleby–Battye–Starobinsky (ABS) model of dark energy, and a quantum correction in the modified F(R) gravity. The energy scale parameter in the ABS model is taken to be close to the inflationary scale, in order to describe double inflation instead of dark energy. The quantum correction is given by the term quartic in the spacetime scalar curvature R with a negative coefficient (−δ) in the F(R) function. It is demonstrated that very good agreement (within 1σ) with current measurements of the cosmic microwave background (CMB) radiation can be achieved by choosing the proper value of δ, thus solving the problem of low values of the tilt of CMB scalar perturbations in the earlier proposed model in arXiv:2205.00603. A large (by a factor of 107 against CMB) enhancement in the power spectrum of scalar perturbations is achieved by fine tuning the parameters of the model. It is found by numerical analysis that it can lead to formation of asteroid-size PBHs with masses up to 1020 g, which may form dark matter in the current universe.

Funder

Tomsk State University

Tokyo Metropolitan University, the Japanese Society for Promotion of Science

World Premier International Research Center Initiative

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3