Abstract
Analogue systems are used to test Hawking radiation, which is hard to observe in actual black holes. One such system is the electrical transmission line, but it suffers the inevitable issue of excess heat that collapses the successfully generated analogue black holes. Soliton provides a possible solution to this problem due to its stable propagation without unnecessary energy dissipation in nonlinear transmission lines. In this work, we propose analogue Hawking radiation in a nonlinear LC transmission line including nonlinear capacitors with a third-order nonlinearity in voltage. We show that this line supports voltage soliton that obeys the nonlinear Schrödinger equation by using the discrete reductive perturbation method. The voltage soliton spatially modifies the velocity of the electromagnetic wave through the Kerr effect, resulting in an event horizon where the velocity of the electromagnetic wave is equal to the soliton velocity. Therefore, Hawking radiation bears soliton characteristics, which significantly contribute to distinguishing it from other radiation.
Funder
Japan Society for the Promotion of Science
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献