The Phase Space Analysis of Interacting K-Essence Dark Energy Models in Loop Quantum Cosmology

Author:

Chen Bohai,Wu Yabo,Chi Jianan,Liu WenzhongORCID,Hu Yiliang

Abstract

The present work deals with two kinds of k-essence dark energy models within the framework of loop quantum cosmology (LQC). The two kinds of k-essence models originates from two forms of Lagrangians, i.e., L1=F(X)V(ϕ) and L2=F(X)−V(ϕ), where F(X) and V(ϕ) stand for the kinetic term and potential of the scalar field ϕ, respectively. Two models are based on different phase variables settings, and the general form of autonomous dynamical system is deduced for each Lagrangian. Then, the dynamical stabilities of the critical points in each model are analysed in different forms of F(X) and V(ϕ). Model I is a 3-dim system with four stable points, and Model II is a 4-dim system but reduced to a 3-dim system using the symmetry analysis, which has five stable points. Moreover, the corresponding cosmological quantities, such as Ωϕ, wϕ and q, are calculated at each critical point. To compare these with the case of the classical Einstein cosmology (EC), the dynamical evolutionary trajectories in the phase space and evolutionary curves of the cosmological quantities are drawn for both EC and LQC cases, which shows that the loop quantum gravity effects diminish in the late-time universe but are significant in the early time. Further, the effects of interaction Q=αHρm on the evolutions of the universe are discussed. With the loop quantum gravity effects, bouncing universe is achieved in both models for different initial values of ϕ0, ϕ˙0, H0, ρ0 and coupling parameter α, which helps to avoid singularities. However, the interaction has little effect on bounce, although it is important to the stability of some critical points.

Funder

National Natural Science Foundation of China

LiaoNing Revitalization Talents Program

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3