Can Dark Energy Emerge from a Varying G and Spacetime Geometry?

Author:

Hanımeli Ekim TaylanORCID,Tutusaus IsaacORCID,Lamine BrahimORCID,Blanchard Alain

Abstract

The accelerated expansion of the universe implies the existence of an energy contribution known as dark energy. Associated with the cosmological constant in the standard model of cosmology, the nature of this dark energy is still unknown. We will discuss an alternative gravity model in which this dark energy contribution emerges naturally, as a result of allowing for a time-dependence on the gravitational constant, G, in Einstein’s field equations. With this modification, Bianchi’s identities require an additional tensor field to be introduced so that the usual conservation equation for matter and radiation is satisfied. The equation of state of this tensor field is obtained using additional constraints, coming from the assumption that this tensor field represents the space-time response to the variation of G. We will also present the predictions of this model for the late-universe data, and show that the energy contribution of this new tensor is able to explain the accelerated expansion of the universe without the addition of a cosmological constant. Unlike many other alternative gravities with varying gravitational strength, the predicted G evolution is also consistent with local observations and therefore this model does not require screening. We will finish by discussing possible other implications this approach might have for cosmology and some future prospects.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Testing a varying-Λ model for dark energy within co-varying physical couplings framework;Monthly Notices of the Royal Astronomical Society;2022-07-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3