Investigating Alfvénic Turbulence in Fast and Slow Solar Wind Streams

Author:

D’Amicis RaffaellaORCID,Perrone Denise,Velli Marco,Sorriso-Valvo LucaORCID,Telloni DanieleORCID,Bruno RobertoORCID,De Marco Rossana

Abstract

Solar wind turbulence dominated by large-amplitude Alfvénic fluctuations, mainly propagating away from the Sun, is ubiquitous in high-speed solar wind streams. Recent observations performed in the inner heliosphere (from 1 AU down to tens of solar radii) have proved that also slow wind streams show sometimes strong Alfvénic signatures. Within this context, the present paper focuses on a comparative study on the characterization of Alfvénic turbulence in fast and slow solar wind intervals observed at 1 AU where degradation of Alfvénic correlations is expected. In particular, we compared the behavior of different parameters to characterize the Alfvénic content of the fluctuations, using also the Elsässer variables to derive the spectral behavior of the normalized cross-helicity and residual energy. This study confirms that the Alfvénic slow wind stream resembles, in many respects, a fast wind stream. The velocity-magnetic field (v-b) correlation coefficient is similar in the two cases as well as the amplitude of the fluctuations although it is not clear to what extent the condition of incompressibility holds. Moreover, the spectral analysis shows that fast wind and Alfvénic slow wind have similar normalized cross-helicity values but in general the fast wind streams are closer to energy equipartition. Despite the overall similarities between the two solar wind regimes, each stream shows also peculiar features, that could be linked to the intrinsic evolution history that each of them has experienced and that should be taken into account to investigate how and why Alfvénicity evolves in the inner heliosphere.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference67 articles.

1. Turbulence, Viscosity, and Dissipation in the Solar-Wind Plasma

2. Large-amplitude Alfvén waves in the interplanetary medium, 2

3. Alfvén waves and directional discontinuities in the interplanetary medium

4. “Alfvénic” versus “standard” turbulence in the solar wind;Grappin;Ann. Geophys.,1991

5. On Sound Generated Aerodynamically. II. Turbulence as a Source of Sound;Lighthill;Proc. R. Soc. Lond. A,1954

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3