Abstract
A gravitational field model based on two symmetric tensors, g μ ν and g ˜ μ ν , is studied, using a Markov Chain Monte Carlo (MCMC) analysis with the most updated catalog of SN-Ia. In this model, new matter fields are added to the original matter fields, motivated by an additional symmetry ( δ ˜ symmetry). We call them δ ˜ matter fields. This theory predicts an accelerating Universe without the need to introduce a cosmological constant Λ by hand in the equations. We obtained a very good fit to the SN-Ia Data, and with this, we found the two free parameters of the theory called C and L 2 . With these values, we have fixed all the degrees of freedom in the model. The last H 0 local value measurement is in tension with the CMB Data from Planck. Based on an absolute magnitude M V = − 19.23 for the SN, Delta Gravity finds H 0 to be 74.47 ± 1.63 km/(s Mpc). This value is in concordance with the last measurement of the H 0 local value, 73.83 ± 1.48 km/(s Mpc).
Funder
Fondo Nacional de Desarrollo Científico y Tecnológico
Subject
General Physics and Astronomy
Reference52 articles.
1. The Confrontation between General Relativity and Experiment
2. Experimental Tests of General Relativity
3. Superstring Theory;Green,1988
4. String Theory. Vol. 1: An Introduction to the Bosonic String;Polchinski,2007
5. Cosmology;Weinberg,2008
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献