Affiliation:
1. Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad de México 04510, Coyoacán, Mexico
2. División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Cunduacán 86690, Tabasco, Mexico
Abstract
Quantum and classical mechanics are fundamentally different theories, but the correspondence principle states that quantum particles behave classically in the appropriate limit. For high-energy periodic quantum systems, the emergence of the classical description should be understood in a distributional sense, i.e., the quantum probability density approaches the classical distribution when the former is coarse-grained. Following a simple reformulation of this limit in the Fourier space, in this paper, we investigate the macroscopic behavior of freely falling quantum particles. To illustrate how the method works and to fix some ideas, we first successfully apply it to the case of a particle in a box. Next, we show that, for a particle bouncing under the gravity field, in the limit of a high quantum number, the leading term of the quantum distribution corresponds to the exact classical distribution plus sub-leading corrections, which we interpret as quantum corrections at the macroscopic level.
Reference50 articles.
1. Born, M. (1971). The Born-Einstein Letters. Correspondence between Albert Einstein and Max and Hedwig Born from 1916 to 1955. With Commentaries by Max Born, Macmillan.
2. Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik;Ehrenfest;Z. Phys.,1927
3. Feynman, R., Hibbs, A., and Styer, D. (2010). Quantum Mechanics and Path Integrals, Dover Books on Physics, Dover Publications.
4. La mécanique ondulatoire de Schrödinger; une méthode générale de resolution par approximations successives;Brillouin;Compt. Rend. Hebd. Seances Acad. Sci.,1926
5. Wellenmechanik und halbzahlige Quantisierung;Kramers;Z. Phys.,1926