Abstract
Using the lattice gauge field theory, we study the relation among the local chiral condensate, monopoles, and color magnetic fields in quantum chromodynamics (QCD). First, we investigate idealized Abelian gauge systems of (1) a static monopole–antimonopole pair and (2) a magnetic flux without monopoles, on a four-dimensional Euclidean lattice. In these systems, we calculate the local chiral condensate on quasi-massless fermions coupled to the Abelian gauge field, and find that the chiral condensate is localized in the vicinity of the magnetic field. Second, using SU(3) lattice QCD Monte Carlo calculations, we investigate Abelian projected QCD in the maximally Abelian gauge, and find clear correlation of distribution similarity among the local chiral condensate, monopoles, and color magnetic fields in the Abelianized gauge configuration. As a statistical indicator, we measure the correlation coefficient r, and find a strong positive correlation of r≃0.8 between the local chiral condensate and an Euclidean color-magnetic quantity F in Abelian projected QCD. The correlation is also investigated for the deconfined phase in thermal QCD. As an interesting conjecture, like magnetic catalysis, the chiral condensate is locally enhanced by the strong color-magnetic field around the monopoles in QCD.
Funder
Japan Society for the Promotion of Science
Subject
General Physics and Astronomy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献