Abstract
A new formalism involving spinors in theories of spacetime and vacuum is presented. It is based on a superalgebraic formulation of the theory of algebraic spinors. New algebraic structures playing role of Dirac matrices are constructed on the basis of Grassmann variables, which we call gamma operators. Various field theory constructions are defined with use of these structures. We derive formulas for the vacuum state vector. Five operator analogs of five Dirac gamma matrices exist in the superalgebraic approach as well as two additional operator analogs of gamma matrices, which are absent in the theory of Dirac spinors. We prove that there is a relationship between gamma operators and the most important physical operators of the second quantization method: number of particles, energy–momentum and electric charge operators. In addition to them, a series of similar operators are constructed from the creation and annihilation operators, which are Lorentz-invariant analogs of Dirac matrices. However, their physical meaning is not yet clear. We prove that the condition for the existence of spinor vacuum imposes restrictions on possible variants of the signature of the four-dimensional spacetime. It can only be (1, − 1 , − 1 , − 1 ), and there are two additional axes corresponding to the inner space of the spinor, with a signature ( − 1 , − 1 ). Developed mathematical formalism allows one to obtain the second quantization operators in a natural way. Gauge transformations arise due to existence of internal degrees of freedom of superalgebraic spinors. These degrees of freedom lead to existence of nontrivial affine connections. Proposed approach opens perspectives for constructing a theory in which the properties of spacetime have the same algebraic nature as the momentum, electromagnetic field and other quantum fields.
Subject
General Physics and Astronomy
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献