Integrable and Superintegrable 3D Newtonian Potentials Using Quadratic First Integrals: A Review

Author:

Mitsopoulos Antonios,Tsamparlis Michael

Abstract

The determination of the first integrals (FIs) of a dynamical system and the subsequent assessment of their integrability or superintegrability in a systematic way is still an open subject. One method which has been developed along these lines for holonomic autonomous dynamical systems with dynamical equations q¨a=−Γbca(q)q˙bq˙c−Qa(q), where Γbca(q) are the coefficients of the Riemannian connection defined by the kinetic metric of the system and −Qa(q) are the generalized forces, is the so-called direct method. According to this method, one assumes a general functional form for the FI I and requires the condition dIdt=0 along the dynamical equations. This results in a system of partial differential equations (PDEs) to which one adds the necessary integrability conditions of the involved scalar quantities. It is found that the final system of PDEs breaks into two sets: a. One set containing geometric elements only and b. A second set with geometric and dynamical quantities. Then, provided the geometric quantities are known or can be found, one uses the second set to compute the FIs and, accordingly, assess the integrability of the dynamical system. The ‘solution’ of the system of PDEs for quadratic FIs (QFIs) has been given in a recent paper (M. Tsamparlis and A. Mitsopoulos, J. Math. Phys. 61, 122701 (2020)). In the present work, we consider the application of this ‘solution’ to Newtonian autonomous conservative dynamical systems with three degrees of freedom, and compute integrable and superintegrable potentials V(x,y,z) whose integrability is determined via autonomous and/or time-dependent QFIs. The geometric elements of these systems are the ones of the Euclidean space E3, which are known. Setting various values for the parameters determining the geometric elements, we determine in a systematic way all known integrable and superintegrable potentials in E3 together with new ones obtained in this work. For easy reference, the results are collected in tables so that the present work may act as an updated review of the QFIs of Newtonian autonomous conservative dynamical systems with three degrees of freedom. It is emphasized that, by assuming different values for the parameters, other authors may find more integrable potentials of this type of system.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference12 articles.

1. Arnold, V.I. (1989). Mathematical Methods of Classical Mechanics, Springer.

2. Superintegrability in classical mechanics;Evans;Phys. Rev. A,1990

3. Second Order Superintegrable Systems in Three Dimensions;Miller;SIGMA,2005

4. Dobrev, V.K. (2006). Quantum Theory and Symmetries IV, Heron Press.

5. Fine structure for 3D second-order superintegrable systems: Three-parameter potentials;Kalnins;J. Phys. A Math. Theor.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3