Quantum Current Algebra in Action: Linearization, Integrability of Classical and Factorization of Quantum Nonlinear Dynamical Systems

Author:

Prykarpatski Anatolij K.ORCID

Abstract

This review is devoted to the universal algebraic and geometric properties of the non-relativistic quantum current algebra symmetry and to their representations subject to applications in describing geometrical and analytical properties of quantum and classical integrable Hamiltonian systems of theoretical and mathematical physics. The Fock space, the non-relativistic quantum current algebra symmetry and its cyclic representations on separable Hilbert spaces are reviewed and described in detail. The unitary current algebra family of operators and generating functional equations are described. A generating functional method to constructing irreducible current algebra representations is reviewed, and the ergodicity of the corresponding representation Hilbert space measure is mentioned. The algebraic properties of the so called coherent states are also reviewed, generated by cyclic representations of the Heisenberg algebra on Hilbert spaces. Unbelievable and impressive applications of coherent states to the theory of nonlinear dynamical systems on Hilbert spaces are described, along with their linearization and integrability. Moreover, we present a further development of these results within the modern Lie-algebraic approach to nonlinear dynamical systems on Poissonian functional manifolds, which proved to be both unexpected and important for the classification of integrable Hamiltonian flows on Hilbert spaces. The quantum current Lie algebra symmetry properties and their functional representations, interpreted as a universal algebraic structure of symmetries of completely integrable nonlinear dynamical systems of theoretical and mathematical physics on functional manifolds, are analyzed in detail. Based on the current algebra symmetry structure and their functional representations, an effective integrability criterion is formulated for a wide class of completely integrable Hamiltonian systems on functional manifolds. The related algebraic structure of the Poissonian operators and an effective algorithm of their analytical construction are described. The current algebra representations in separable Hilbert spaces and the factorized structure of quantum integrable many-particle Hamiltonian systems are reviewed. The related current algebra-based Hamiltonian reconstruction of the many-particle oscillatory and Calogero–Moser–Sutherland quantum models are reviewed and discussed in detail. The related quasi-classical quantum current algebra density representations and the collective variable approach in equilibrium statistical physics are reviewed. In addition, the classical Wigner type current algebra representation and its application to non-equilibrium classical statistical mechanics are described, and the construction of the Lie–Poisson structure on the phase space of the infinite hierarchy of distribution functions is presented. The related Boltzmann–Bogolubov type kinetic equation for the generating functional of many-particle distribution functions is constructed, and the invariant reduction scheme, compatible with imposed correlation functions constraints, is suggested and analyzed in detail. We also review current algebra functional representations and their geometric structure subject to the analytical description of quasi-stationary hydrodynamic flows and their magneto-hydrodynamic generalizations. A unified geometric description of the ideal idiabatic liquid dynamics is presented, and its Hamiltonian structure is analyzed. A special chapter of the review is devoted to recent results on the description of modified current Lie algebra symmetries on torus and their Lie-algebraic structures, related to integrable so-called heavenly type spatially many-dimensional dynamical systems on functional manifolds.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference236 articles.

1. Lectures on diffeomorphism groups in quantum physics;Goldin,2004

2. Lie algebras of local currents and their representations;Goldin,1970

3. Functional Differential Equations Determining Representations of Local Current Algebras in Magic without Magic: John Archibald Wheeler;Goldin,1972

4. Nonrelativistic Current Algebras as Unitary Representations of Groups

5. Nonrelativistic current algebra in the N / V limit

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3