An Effective Sign Switching Dark Energy: Lotka–Volterra Model of Two Interacting Fluids

Author:

Ong Yen Chin12ORCID

Affiliation:

1. Center for Gravitation and Cosmology, College of Physical Science and Technology, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China

2. Shanghai Frontier Science Center for Gravitational Wave Detection, School of Aeronautics and Astronautics, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Minhang, Shanghai 200240, China

Abstract

One of the recent attempts to address the Hubble and S8 tensions is to consider that the Universe started out not as a de Sitter-like spacetime, but rather anti-de Sitter-like. That is, the Universe underwent an “AdS-to-dS” transition at some point. We study the possibility that there are two dark energy fluids, one of which gave rise to the anti-de Sitter-like early Universe. The interaction is modeled by the Lotka–Volterra equations commonly used in population biology. We consider “competition” models that are further classified as “unfair competition” and “fair competition”. The former involves a quintessence in competition with a phantom, and the second involves two phantom fluids. Surprisingly, even in the latter scenario it is possible for the overall dark energy to cross the phantom divide. The latter model also allows a constant w “AdS-to-dS” transition, thus evading the theorem that such a dark energy must possess a singular equation of state. We also consider a “conversion” model in which a phantom fluid still manages to achieve “AdS-to-dS” transition even if it is being converted into a negative energy density quintessence. In these models, the energy density of the late time effective dark energy is related to the coefficient of the quadratic self-interaction term of the fluids, which is analogous to the resource capacity in population biology.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3